
Abstract  Salt marsh ponds expand and deepen over time, potentially reducing ecosystem carbon storage 
and resilience. The water filled volumes of ponds represent missing carbon due to prevented soil accumulation 
and removal by erosion and decomposition. Removal mechanisms have different implications as eroded carbon 
can be redistributed while decomposition results in loss. We constrained ponding effects on carbon dynamics 
in a New England marsh and determined whether expansion and deepening impact nearby soils by conducting 
geochemical characterizations of cores from three ponds and surrounding high marshes and models of 
wind-driven erosion. Radioisotope profiles demonstrate that ponds are not depositional environments and that 
contemporaneous marsh accretion represents prevented accumulation accounting for 32%–42% of the missing 
carbon. Erosion accounted for 0%–38% and was bracketed using radioisotope inventories and wind-driven 
resuspension models. Decomposition, calculated by difference, removes 22%–68%, and when normalized over 
pond lifespans, produces rates that agree with previous metabolism measurements. Pond surface soils contain 
new contributions from submerged primary producers and evidence of microbial alteration of underlying peat, 
as higher levels of detrital biomarkers and thermal stability indices, compared to the marsh. Below pond surface 
horizons, soil properties and organic matter composition were similar to the marsh, indicating that ponding 
effects are shallow. Soil bulk density, elemental content, and accretion rates were similar between marsh sites 
but different from ponds, suggesting that lateral effects are spatially confined. Consequently, ponds negatively 
impact ecosystem carbon storage but at current densities are not causing pervasive degradation of marshes in 
this system.

Plain Language Summary  Ponds are natural features of salt marshes but their expansion may be 
an indicator of ecosystem deterioration because they impede the marsh's ability to keep pace with sea-level 
rise and remove decades of buried soil carbon. The water filled holes created by ponds represent volumes of 
marsh soil carbon that are missing due to prevented accumulation or lost through erosion and decomposition. 
These loss pathways have different implications for coastal carbon cycling as eroded soils can be redeposited 
elsewhere while microbial decomposition represents permanent loss. We used geochemical and modeling 
approaches to assess how much of the carbon missing from ponds can be attributed to prevented soil 
accumulation, erosion, and decomposition as well as whether ponds reduce the integrity of the surrounding 
marsh. We estimate that these processes represent 32%–42%, 0%–38%, and 22%–68%, respectively, of soil 
carbon missing from three ponds in a New England salt marsh. The range of potential erosion losses reflect 
differences in fetch and wind-driven waves used in the models. Decomposition was calculated by subtracting 
the contributions of prevented accretion and erosion from the volume of missing carbon and, while the range is 
large, losses normalized over time are comparable to previously measured respiration rates. Comparisons of soil 
properties and composition between the ponds and surrounding marsh demonstrate that the effects of expansion 
are confined to within a 10 m perimeter. Consequently, in this system, ponds represent net losses from the 
carbon budget and at current densities are not causing pervasive degradation of the marsh.
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•	 �Three processes account for soil 
carbon missing from deepening 
ponds: prevented deposition, erosion, 
and decomposition

•	 �Eroded soils may be redistributed 
and retained within the marsh, while 
decomposition represents carbon loss
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1.  Introduction
Disturbances to salt marsh ecosystems have the potential to alter important functions and delivery of valua-
ble services (Barbier et  al.,  2011; Craft et  al.,  2009). Fast rising sea levels and management techniques that 
reduce soil drainage can catalyze the conversion of vegetated marsh into open water environments (Boston, 1983; 
DeLaune et al., 1994; Mariotti, 2016). Expansion and deepening of open water areas, also called ponds or pools, 
are often attributed to soil erosion and decomposition but the contributions of each process and how they change 
over time are open questions (Johnston et al., 2003; Ortiz et al., 2017; Turner & Rao, 1990). The implications of 
these processes differ as eroded soils can be redistributed across the marsh or exported to coastal waters while 
decomposition represents permanent loss of organic carbon (Figure 1). The combined effects of erosion and 
decomposition on pond deepening and widening may impact marsh sustainability by preventing future soilbuild-
ing and reducing the integrity of the underlying and surrounding soils. Assessing the processes contributing to 
expansion is therefore key in understanding how ponds affect ecosystem soil dynamics and carbon storage.

Ponds have a dynamic life cycle whereby they can exist for decades before intersecting with a tidal creek, drain-
ing, and infilling through sediment trapping and re-establishment of emergent vegetation (Mariotti et al., 2020; 
Wilson et al., 2014). In some systems, pond formation and infilling are largely balanced (Smith & Pellew, 2021) 
while in others expansion leads to permanent marsh loss (Mariotti, 2016; Mariotti & Fagherazzi, 2013). Soil 
waterlogging in the marsh interior can lead to sulfide accumulation, grass dieback, and pond formation (Burdick 
& Mendelssohn, 1990; Mendelssohn & McKee, 1988). Death and collapse of marsh grass roots can result in 
>10 cm of elevation loss during early phases of pond formation, but this is difficult to quantify (Day et al., 2011; 
DeLaune et al., 1994). Ponds become decomposition hotspots with high soil respiration rates fueled by carbon 
from benthic microalgae and the underlying peat (Spivak et al., 2018). As a result, some ponds are net heter-
otrophic, meaning that more organic matter is respired than produced in situ (Johnston et  al.,  2003; Spivak 
et al., 2017, 2020). Scaling metabolism rates over pond lifespans suggests that decomposition could be responsible 

Figure 1.  Three main processes contribute to pond deepening and expansion. Vertical accretion of the surrounding marsh 
platform (green) contributes to relative pond deepening because ponds are not depositional environments. Wind-generated 
waves cause soil erosion and export (brown) through benthic resuspension and pond edge retreat. Exported soils may 
be redeposited on the marsh surface, contributing to vertical accretion, or washed into adjacent coastal waterways. 
Decomposition (black) along pond walls and bottoms results in permanent organic matter loss as carbon dioxide (CO2) or 
dissolved inorganic carbon. We predict that erosive losses are more important during early phases of pond development while 
decomposition plays a progressively larger role over time. Contributions from accretion are constant over time, assuming 
a stable relationship between sea level and marsh position in the tidal frame over the past 100 years when acceleration of 
sea level rise was within sediment accretion uncertainty. The bottom table describes how the processes contribute to pond 
expansion and the analytical or modeling approaches we used to evaluate each.
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for most—if not all—of the carbon lost during formation and deepening, after accounting for accretion of the 
surrounding marsh (Figure 1; Johnston et  al.,  2003; Spivak et  al.,  2017,  2020). However, extrapolating rates 
measured over days-to-seasons to timescales of years-to-decades has important caveats.

Wind-generated waves are the primary driver of erosion in ponds as they cause edge retreat and soil resuspen-
sion (Kearney et al., 1988; Mariotti, 2016; Ortiz et al., 2017; Stevenson et al., 1985). Consistent wind direc-
tions and storm paths can focus edge erosion such that ponds elongate along the same path (Ortiz et al., 2017; 
Stevenson et  al.,  1985). Lateral expansion of large ponds can accelerate over time as greater fetch distances 
facilitate faster erosion. Such runaway expansion may eventually result in the loss of large areas of vegetated 
marsh (Mariotti, 2016; Mariotti & Fagherazzi, 2013). Eroded soils can be exported to coastal waters and lost from 
the system or redeposited on the marsh and contribute to vertical accretion (Figure 1; Hopkinson et al., 2018; 
Luk et al., 2021). Resuspension may also facilitate organic carbon loss via decomposition, by moving particles 
from anoxic pond soils into oxic surface waters. However, since ponds can be nearly a meter deep (Adamowicz 
& Roman, 2005)—and hence lower than the wave base—other processes must also contribute to the loss of soil 
organic matter.

Geochemical signals in soils can provide insight into the effects of erosion and decomposition which alter both 
the physical structure (e.g., bulk density) and organic matter composition (e.g., lipid biomarkers; Figure  1). 
For instance, bulk density may decrease as decomposition removes organic matter and water fills pore spaces, 
while low radioisotope inventories (e.g.,  210Pb,  137Cs) can point to erosional losses (DeLaune et al., 1994). Ther-
mochemical properties provide an index of organic matter stability but hold limited information about carbon 
sources and transformations (Luk et al., 2021; Sanderman & Grandy, 2019; Williams & Plante, 2018). Comple-
mentary lipid biomarker analyses can be used to assess new organic matter inputs and degradation of older mate-
rial as these compounds have high source fidelity and span a range of chemical reactivity (Canuel et al., 2007; 
Spivak et al., 2007). Two lipid classes, fatty acids (FA) and hydrocarbons, are particularly useful as they repre-
sent relatively fresher and more detrital organic matter, respectively (Canuel et al., 1997; Spivak, 2015; Wang 
et al., 2003). Because these proxies hold different information overlaying them provides a more holistic assess-
ment of the processes changing soil structure and composition.

The water-filled volumes of ponds represent carbon stocks missing from the marsh. We evaluated how three 
processes account for the missing carbon: avoided accretion, decomposition, and erosion (Figure 1). Avoided 
accretion was determined by developing soil age models from radioisotope ( 210Pb) profiles of marshes and ponds 
and comparing inventories. We developed models of wind-driven waves to estimate potential erosional losses. 
Decomposition signals were assessed using multiple geochemical characterization approaches. We then esti-
mated the net effect of ponds on the soil carbon inventory of a New England marsh. To determine whether 
pond expansion causes deterioration of the marsh, soil properties were compared at two distances from pond 
perimeters. Because ponds expand laterally and deepen over time, we expected that marsh soils adjacent to and 
underlying ponds would show signs of deterioration, but these would likely be spatially limited and not propagate 
far into the surrounding marsh.

2.  Methods
2.1.  Study Location and Sample Collections

We focused on three ponds and the surrounding high marshes within the Plum Island Ecosystems—Long Term 
Ecological Research (PIE-LTER) project domain (Figure  2a; 1.41–1.51  m North American Vertical Datum 
of 1988 [NAVD 88]). Emergent grass communities of Spartina patens, S. alterniflora, and Distichlis spicata 
surround the ponds which formed around the same time (1965–1978), are permanently inundated, and have 
similar depths (0.24–0.30 m), but different volumes, aquatic plant communities, and surface water and sediment 
metabolic rates (Spivak et al., 2017, 2018, 2020). The ponds are typical of those in the high marshes of PIE-LTER 
(Spivak et al., 2020) and were chosen because we wanted to assess whether erosive and decomposition effects 
were similar across ponds with different characteristics. At each of the three sites, we collected one pond core 
(60 cm) and two marsh cores (90 cm) that were 10–12 m (core M1) and 20–29 m (core M2) away. Sampling 
distances reflected the goals of capturing spatial gradients that were beyond the immediate perimeter of mudflats 
and sparse emergent grasses but reflect zones with potentially greater (M1) or lesser (M2) pond influence (e.g., 
transitions from S. alterniflora to D. spicata) and were at a spatial resolution relevant to marsh models. Limited 
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sample replication within and between ponds reflects a tradeoff between high-resolution down-core profiles 
needed to assess erosion and decomposition effects with resource intensive geochemical analyses while lateral 
sampling distances were physically constrained by tidal channels and mosquito ditches.

In summer—fall 2014, we conducted elevation surveys, characterized pond biogeochemistry and metabolism 
rates, and collected soil cores (Luk et al., 2021; Spivak et al., 2017, 2018). This study builds on our previous 
work by using multiple geochemical proxies to assess erosion and decomposition signals in ponds and whether 
they propagated laterally into the marsh, and by estimating wave-driven resuspension and erosion. Elevation was 
measured with a Real Time Kinematic – Global Positioning System and was similar at the M1 (1.45 ± 0.02 m 
NAVD 88) and M2 (1.45 ± 0.03 m NAVD 88) sites. Pond depths were measured with a meter stick and referenced 
to elevation at the edges. Soil cores were collected in large diameter barrels and compaction was not observed 
upon retrieval (10 cm diameter × 60–90 cm long). The cores were refrigerated until processing within 1–2 days, 
when they were split lengthwise with one half sectioned at 1–2 cm intervals (bulk properties, elemental compo-
sition, radioisotope activities) and the other half at 2–5 cm intervals (organic matter composition), with greater 
resolution (2 cm) in surface horizons (top 30 cm). Sampling resolutions reflected our expectation that struc-
tural and compositional changes associated with decomposition would be concentrated in pond surface horizons 

Figure 2.  (a) Location of the three ponds on the high marsh platform of Plum Island Ecosystems—Long Term Ecological Research site (MA, USA) (aerial imagery: 
Google, 2022). (b) Soil cores were collected from ponds and nearby (M1) or farther away (M2) sites in the emergent marsh. Comparisons between overlapping horizons 
between the ponds (0–60 cm) and marsh (30–90 cm) were used to evaluate processes contributing to pond deepening. Soil zones are defined as (A) marsh surface soils 
and emergent grass rooting zone, (B) pond upper soils, (C) intermediate, and (D) deeper horizons. (c) Wind-driven erosion was modeled based on two scenarios of fetch 
and water depth: one for tidally isolated ponds (top) and a second for when high tides inundate the marsh platform (bottom).
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(0–10 cm) and that any lateral ponding effects would be evident in marsh horizons that overlapped with pond 
surface waters (i.e., 0–30 cm).

2.2.  Bulk Soil Properties and Elemental Composition

Soil bulk density (g cm −3) was determined gravimetrically by drying to constant mass (60°C). Soils were sieved 
(<1  mm) to remove large roots, leaving the fine fraction representing refractory soil organic carbon (SOC). 
In preparation for elemental and isotopic analysis, samples were homogenized with a Retsch Mixer Mill 200. 
Approximately 90% of samples were fumed with 12 N hydrochloric (HCl) acid to remove inorganic carbonates 
(Hedges & Stern, 1984; Lorrain et al., 2003) and subsequently analyzed for total organic carbon (TOC), total 
nitrogen, and stable isotope composition (δ 13C, δ 15N; ‰) at the Stable Isotope Laboratory at the Marine Biolog-
ical Laboratory (Woods Hole, MA) using a Europa ANCA-SL elemental analyzer-gas chromatograph prepara-
tion system interfaced with a continuous-flow Europa 20-20 gas source stable isotope ratio mass spectrometer. 
Carbon content of the remaining samples was estimated using Fourier transform infrared (FTIR) spectroscopy 
from a Thermo Nicolet 6,700 FTIR spectrometer equipped with a Pike AutoDiff automated diffuse reflectance 
accessory (Sanderman et al., 2015) and partial least squares regressions (Janik et al., 2007; Luk et al., 2021). We 
focused on the far marsh cores (M2) because we expected a stronger contrast against pond soils. Marsh surface 
and rooting zone soils (0–30 cm) were analyzed at a 10 cm resolution while overlapping marsh and pond horizons 
were analyzed at a 4–6 cm resolution, reflecting the tradeoff between needed down core resolution and analytical 
resources.

2.3.  Thermal Reactivity

We assessed the thermal reactivity of SOC using ramped pyrolysis oxidation (RPO) at the National Ocean 
Sciences Accelerator Mass Spectrometry Facility (Woods Hole MA; Luk et al., 2021). Selected horizons from 
the M2 and pond cores captured the marsh surface (0 cm marsh; 1.41–1.50 m NAVD 88), pond surface (∼30 cm 
marsh; 0 cm pond; 1.14–1.20 m NAVD 88), and deeper horizons (∼80 cm marsh; ∼50 cm pond, 0.66–0.73 m 
NAVD 88). Homogenized samples were placed in a reactor where temperatures ramped from ambient to 1,000°C 
under a constant flow of ultra-high purity helium and oxygen to promote thermal degradation and oxidation of 
SOC (20°C min −1; Rosenheim et al., 2008). The evolved carbon dioxide (CO2) was measured using an infrared 
gas analyzer. We used the temperature at which 50% of CO2 evolved (t50) as a proxy of thermal reactivity.

2.4.  Lipid Biomarkers

We further assessed SOC composition by characterizing source-specific biomarkers in the ponds and far marsh 
sites (M2). We focused on two classes of biomarkers, FA and hydrocarbons, as they provide complementary 
source information and represent fresher and more detrital material, respectively (Bianchi & Canuel,  2011). 
Lipid biomarkers were extracted using a modified Bligh and Dyer (1959) method (Spivak, 2015). Briefly, sedi-
ments were extracted using a methanol: chloroform: phosphate buffer saline mixture (2: 1: 0.8, v: v: v) with a 
microwave-accelerated reaction system that heated samples to 80°C for 10 min with constant stirring. Samples 
were then partitioned and the organic phase removed. The total lipid extract was concentrated under nitrogen gas 
and elemental sulfur was removed by filtration through acid-rinsed copper. Extracts were resuspended in hexane 
and sequentially separated into four fractions by solid phase extraction on Discovery DSC-NH2 stationary phase 
(1 g): F1 5 mL hexane; F2 8 mL of 4:1 hexane: methylene chloride; F3 10 mL of 9: 1 methylene chloride: acetone; 
F4 15 mL of 2% formic acid in methylene chloride (Sessions, 2006). The F4 fraction was methylated with acidic 
methanol (95:5, methanol: HCl) and heated overnight at 70°C to form fatty acid methyl esters. The F1 (hydrocar-
bons) and F4 (FAMEs) were analyzed with an Agilent 7890 gas chromatograph with the effluent split ∼70: 30 
between a 5975C mass spectrometer and a flame ionization detector. Compounds were separated on an Agilent 
DB-5 column (60 m, 0.25 mm inner diameter, 0.25 μm film). Hydrocarbon and FAMEs concentrations were 
quantified using a methyl heneicosanoate internal standard. Percent composition was calculated by normalizing 
to the total concentration.

2.5.  Radiometric Dating and Accretion Rates

Soil accretion rates were constrained by developing geochronology models based on measurements 
of  7Be,  137Cs,  210Pb, and  226Ra on a planar-type gamma counter (Canberra, Inc. USA; Gonneea et al., 2019). 
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Activities of  226Ra and  210Pb and were then processed with the rPlum (0.2.2) package for R, in order to obtain 
Bayesian-based accretion rate estimates and 95% confidence intervals (Aquino-López et al., 2018). The model 
was run using measured  226Ra activities as individual estimates of supported  210Pb within each soil horizon. Pond 
accretion rates could not be obtained due to violation of steady-state assumptions (Luk et al., 2021). Total  210Pb 
inventories within the marsh and ponds were used to estimate rates of soil erosion as described in the next section 
(Walling & Quine, 1994).

2.6.  Pond Erosion Estimates

Erosional losses were constrained (a) by estimating wind-driven resuspension and export, and (b) from differ-
ences in total  210Pb inventories between the marsh and ponds. Wave driven erosion in the ponds was estimated 
with a simplified model. We calculated significant wave height and peak period as a function of wind speed, 
fetch, and water depth using semi-empirical equations (Young & Verhagan, 1996). We then calculated the bed 
shear stresses using the linear wave theory (Wiberg & Sherwood, 2008) and the Swart (1974) formula for the 
friction factor, with an equivalent bed roughness of 0.3 mm. Wind speed estimates were based on median wind 
speeds (4.04 m s −1) recorded by a meteorological tower in PIE-LTER located near one of ponds that has been in 
operation since 2013 (42.7345, −70.8382; Giblin, 2021).

We constrained wind-driven erosion based on fetch and water depth in two scenarios: one for tidally isolated 
ponds (i.e., the marsh platform is not inundated) and a second for when high tides inundate the marsh platform 
(Figure 2c). For waves generated within the ponds, we selected fetches equal to pond diameters (30–100 m) and 
depths calculated with respect to the surrounding marsh (i.e., assuming the pond is completely filled with water). 
We then considered the scenario when the marsh is inundated and selected a larger fetch (i.e., the marsh platform, 
1–3 km), but a shallower depth (equal to the depth on top of the platform). In the latter case, we used the depth on 
top of the marsh platform to calculate the wave height, but we used the depth inside the ponds to calculate the bed 
shear stresses in the ponds. For both scenarios we identified the pond depths (with respect to the marsh platform) 
for which the bed shear stress is equal to the critical value, which was assumed equal to range from 0.1 to 0.2 Pa 
based on intertidal mudflats (Mitchener & Torfs, 1996). In practice, we used these two scenarios to estimate the 
maximum depths at which wind-driven erosion and soil export no longer take place due to bed shear stresses 
falling below the critical value.

We then estimated the frequency that erosion and export events co-occur by combining wind and tidal height 
data. From the PIE-LTER meteorological tower data, we selected representative years capturing the minimum 
and maximum wind speeds between 2013 and 2019 and identified periods when windspeeds were greater than 
4 m s −1. Within those periods we evaluated whether tidal waters were high enough to overtop the marsh platform 
and connect with the ponds (Spivak et al., 2017). From this combined data set we calculated frequency that high 
wind and water events co-occur within a year and could lead to export.

We further constrained erosional losses by calculating  210Pb inventories in the marshes and ponds. We assumed 
that higher average total inventories of marsh cores (M1, M2) reflected a depositional environment while lower 
total inventories of the pond cores were due to physical removal and/or nondeposition of soil material (Walling 
& Quine, 1994).

2.7.  Data Analysis

To evaluate how soil properties and composition change with depth in ponds and compare across the pond and 
marsh sites (near M1, far M2), we pooled soil horizons based on elevation relative to the marsh upper hori-
zons (1.2–1.5 m, NAVD88) that reflect (A) marsh surface soils and emergent grass rooting zone (0–30 cm), 
(B) pond upper soils (0–10 cm) and marsh soils (30–40 cm) at corresponding elevations, and (C) intermediate 
(10–30 cm pond; 40–60 cm marsh) and (D) deeper (30–50 cm pond; 60–80 cm marsh) horizons (Figure 2b). 
Kolmogorov-Smirnov tests were used to evaluate normality and data were log-transformed as needed in 
MATLAB. Post-hoc contrasts from linear mixed models were used to test down-core changes in the marsh (M1 
and M2) and pond zones as well as to assess differences between zones across these environments. Contrast 
coefficients and p-values describe the magnitude and directional difference in soil composition between envi-
ronments or downcore zones and whether differences are significant. Using this approach, we further assessed 
across site variability by testing differences in whole-core (A–D) marsh soils (M1 and M2) across the three 
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study sites. Linear mixed models and post-hoc contrasts were conducted in 
R (1.3.1093) using the lm (4.0.0) and lsmeans (2.30.0) packages (R Core 
Team, 2022).

Because we could not develop accretion models for the ponds, statistical 
comparisons of marsh soil accretion rates were treated differently. To test 
differences in marsh accretion rates that corresponded with time-since-
pond formation and distance from pond, we conducted post-hoc contrasts 
of mixed linear models to evaluate differences between horizons depos-
ited before and after pond formation (Ponds 1 and 2: 1978, Pond 3: 1963; 
approximated by aerial photographs, Spivak et al., 2017) and marsh core 
location.

3.  Results
3.1.  Bulk Soil Properties

Downcore trends in soil bulk density and elemental content were gener-
ally similar across the ponds and marsh environments. Bulk density gener-
ally increased while %TN decreased with depth in both marshes and ponds 
(Table 1a, Figures 3a and 3b). Soil TOC content (%) and density (kg m −3) 
were similar in emergent and submerged environments and tended to decrease 
with depth, though this was not significant (Figures 3c and 3e, Table 1a,b). 
Carbon-to-nitrogen (C:N) ratios were highest in the top 30 cm of marsh soils 
(depth zone A) but, below this, were similar in the marshes and ponds and 
showed little change with increasing depth (Table 1a,b, Figure 3d). Ponds 
generally had lower bulk densities than the marsh and higher %TN values, 
particularly in the upper B depth zone (M1 and M2; Figures  2 and  3; 
Table  1b). Soil properties and elemental content likely reflect a combina-
tion of processes, including water infiltration in pond surface horizons that 
results in lower bulk density, and long-term decomposition that contributes 
to carbon loss and compaction of deeper soils.

Similar soil properties in the top 30 cm (depth zone A) of the near and far 
marsh sites suggest that they are unaffected by ponding (Figure 3, Table 1b). 
Only C:N differed with distance from the ponds, with higher ratios in the far 
marsh (M2) that reflect slightly lower %TN. In contrast, there were stronger 
differences between soil properties in the top 30  cm (A depth zone) and 
deeper depth zones (B-D; Table S1 in Supporting Information S1). Lower 
bulk densities and higher %TOC and %TN in the top 30 cm are consistent 
with the active rooting zone.

3.2.  SOC Sources and Reactivity

We assessed SOC sources and reactivity in the ponds and far marsh soils 
(M2) with a combination of stable isotopes, lipid biomarkers, and thermal 

indices to evaluate potential shifts in organic matter inputs that could be indicative of erosion and decomposition 
(Figures 4 and 5, Tables 2–4). Soil δ 13C and δ 15N values ranged from −17 to −11‰ and 0.74–7.17‰, respec-
tively, reflecting salt marsh-derived organic matter (Figure 4, Table 2; Spivak & Ossolinski, 2016). Soil δ 13C 
values were similar across depths and between marsh and pond environments, with the exception of horizon B 
where pond values were comparatively depleted (Figures 4a, Table 2). In contrast, δ 15N values were lower in 
ponds compared to the marsh (Figures 4b, Table 2c). The reactivity proxy, t50, increased with depth in marsh 
soils indicating a shift toward greater thermal stability (Figures 4c, Table 2). Interestingly, t50 values were highest 
in pond surfaces (depth zone B, Table 2c) but decreased and converged with marsh values below this (depth zones 
C, D, Table 2c). Stable isotopes and t50 reflect the entire SOC pool so in order to gain greater insight into sources 
and transformations we used fatty acid and hydrocarbon lipid biomarkers.

Table 1 
(a) Downcore and (b) Between-Environment Contrast Analyses 
for Soil Properties at the Pond and Near (M1) and Far (M2) 
Marsh Sites. Response Variables Include Soil Bulk Density, Total Nitrogen 
Content, Total Organic Carbon Content, C:N Ratios (Molar), and Total 
Organic Carbon Density

Contrast

Bulk 
density 
log10 

(g cm −3)

Total 
nitrogen 

log10 
(%)

Total 
organic 
carbon 

log10 (%) C:N

Total 
organic 
carbon 

(kg m −3)

a.

POND B–C −0.15 0.17 0.13 −0.02 2.04

C–D 0.09 −0.04 −0.02 0.33 2.61

B–D −0.06 0.13 −0.11 0.31 4.64

M1 B–C −0.09 0.08 0.05 0.16 0.76

C–D 0.01 0.02 −0.06 0.15 −1.85

B–D −0.08 0.10 −0.01 0.31 −1.08

M2 B–C −0.14 0.14 0.11 2.35 3.98

C–D 0.06 −0.02 0.00 0.30 2.40

B–D −0.08 0.11 0.11 2.64 6.38

b.

A M1–M2 −0.03 0.06 0.03 −1.30 −0.45

B M1–M2 −0.02 0.03 −0.01 −1.89 −1.93

M1–POND 0.12 −0.12 −0.09 1.20 1.88

M2–POND 0.14 −0.16 −0.08 3.09 3.81

C M1–M2 −0.07 0.09 0.11 0.62 2.82

M1–POND 0.06 −0.04 0.01 1.34 4.68

M2–POND 0.13 −0.13 −0.10 0.72 1.86

D M1–M2 −0.02 0.05 0.07 1.07 3.37

M1–POND 0.14 −0.09 −0.05 1.83 5.44

M2–POND 0.16 −0.14 −0.12 0.76 2.07

Note. Contrast coefficients are presented for depth zones as described in 
Section  2.7 and Figure  1b. Bolded values are significant at p  <  0.05. For 
example, the downcore contrast coefficient for Pond “B–C” for bulk 
density demonstrates that the significant difference between (B) surface 
and (C) intermediate pond soil properties is −0.15 log10 (g cm −3). Between-
environment contrast coefficient of B “M1–M2” represents the insignificant 
difference between the M1 and M2 soil properties at depth zone B.
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The total FA were primarily comprised of long-chain (LCFA) and short chain (SCFA) saturated compounds 
with smaller contributions of monounsaturated (MUFA), branched (BrFA), polyunsaturated (PUFA), and linoleic 
and linolenic (C18:2 + C18:3) compounds (Figure 5, Figure S1 in Supporting Information S1; Table 3). Levels of 
%SCFA, %MUFA, and %PUFA were higher in pond surface soils and decreased with depth (Figures 5a, 5b, 
and 5e; Tables 3–4). In contrast %SCFA and %PUFA were constant with depth in the marsh, while %MUFA 
was higher in surface soils. Bacterial contributions, represented by BrFA, were similar in pond horizons B and 
C, but decreased with depth in the marsh (Figures 5d, Table 4). Vascular plant contributions, represented by 
%LCFA, were lower in pond surface horizons and increased with depth (Figures 5c, Table 4). In contrast, two 

Figure 3.  Pond and marsh (near: M1; far: M2) soil (a) bulk density, (b) total nitrogen (TN) content (TN %), (c, e) total organic carbon (TOC) content and density 
(TOC % and kg m −3), and (d) C:N ratios (molar) by elevation and depth horizon. Data represent mean and SE of 6 cm increments. See methods and Figure 2b for 
descriptions of the depth zones A-D and Table 1 for contrast analyses.

Figure 4.  (a and b) Stable isotope composition (δ 13C, δ 15N; ‰) and the (c) thermal reactivity proxy t50 of pond and marsh 
(M2, far) soils. The t50 represents temperatures at which 50% of soil organic carbon is pyrolyzed. Data are mean and SE. 
Statistical results in Table 2.
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compounds produced by S. alterniflora and Ruppia maritima, linoleic and linolenic FAs, were higher in surface 
horizons, particularly in the marsh, but declined with depth (Figures 5f, Table 4). In general, marsh soil profiles of 
the  percent contributions of different FA groups were less variable than the ponds, with some evidence of decom-
position as slight increases in %LCFA and decreasing microbial contributions (%MUFA, %SCFA, %PUFA) 
from surface to depth (Figure S1 in Supporting Information S1). Ponds, in contrast, had higher contributions of 
algal lipids in surface horizons, reflecting colonization by benthic microalgae (Spivak et al., 2018), and greater 
evidence of decomposition as sharper shifts in %SCFA, %MUFA, %PUFA, and %LCFA with depth.

We used hydrocarbons to evaluate contributions from vascular plant detritus. In the marsh, contributions of 
long-chain n-alkanes were relatively constant with depth (Figure 5g; Tables 3 and 4). In contrast, levels were 
higher in pond surfaces and decreased by ∼10% with depth. Greater percent contributions in pond surface hori-
zons compared to the marsh suggest either increased deposition of plant detritus or a changing decomposi-
tion environment that facilitates an accumulation of these compounds. In combination, our data indicate that 
pond surface soil horizons were distinct from the surrounding marsh, with greater contributions from algae and 

Figure 5.  Relative abundances of (a) short chain FAs (SCFA), (b) monounsaturated FAs (MUFA), (c) long chain FAs 
(LCFA), (d) branched FAs (BrFA), (e) polyunsaturated FAs (PUFA), (f) C18:2 + C18:3, and (g) odd-chain n-alkanes in ponds 
and M2 marsh sites. Data are the mean and SE. See Section 2.7 for a description of soil zones, Table 3 for source information, 
and Table 4 for statistical results.
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microbes and shifts in reactivity proxies that are consistent with microbial 
processing.

3.3.  Soil Radioisotopes

We assessed whether marsh vertical accretion rates differed with distance 
from the ponds or changed after the approximate year of pond formation 
(data available in USGS ScienceBase, Luk et  al.,  2020). Mean verti-
cal accretion rates at sites closer (M1) and farther (M2) from the ponds 
ranged from 4.78 to 5.12  mm  yr −1 (Figure  6), exceeding local sea-level 
rise (SLR) rates (2.87  ±  0.15  mm  yr −1; NOAA station #8443970). In 
the farther marsh site (M2), accretion rates accelerated after 1963–1978, 
which roughly coincides with the appearance of the ponds in aerial images 
(Table  5). However, in the early 2000s (∼1.35  m NAVD 88), accretion 
rates at both the near (M1) and far (M2) marsh locations converged to an 
average of 5.10 mm yr −1. These accretion rates indicate that the marshes 
gained 6.8–9.7 cm in elevation since the ponds formed, which accounts for 
22%–33% of pond depths.

We also used  210Pb to assess if net accretion occurred in the ponds after forma-
tion. Based on pond elevations, it is apparent that if any accretion occurred, it 
would be at rates suppressed compared to the platform. In addition, given the 
proximity of the pond and platform cores, similar  210Pb atmospheric deposi-

tion rates are expected. As a result, if sediment accretion occurred in the ponds, we would expect higher  210Pb 
activities at lower accretion rates, however the opposite is observed with  210Pb activities in pond surface sedi-
ments significantly depressed compared to marsh surface activities. In fact, the  210Pb activities are comparable 
at similar elevations across pond and platform cores. As a result, soil radioisotope inventory differences between 
pond and platform environments informed diffusion-migration erosion models. Mean  210Pb inventories in the 
marsh cores were 5,576 Bq m −2, and ranged from 4,137 to 7,835 Bq m −2. Inventories in the pond soils were much 
lower, ranging from 517 to 2,915 Bq m −2.

Table 2 
Contrast Coefficients of Soil Stable Isotope Composition (δ 13C, δ 15N; ‰) 
and Thermal Reactivity (t50) Between Depth Horizons Within (a and b) and 
Across (c) the Pond and Far Marsh (M2) Environment

Contrast 𝛅 13C 𝛅 15N t50

a.

POND B–C −1.14 −0.71 10.50

C–D −0.60 0.05 16.93

B–D −1.74 −0.66 27.43

b.

M2 B–C 0.25 0.64 −18.80

C–D −0.69 −0.50 5.22

B–D −0.44 0.13 −13.58

c.

M2–POND B 1.66 2.44 −27.72

C 0.27 1.09 1.58

D 0.37 1.64 13.28

Note. Significant values (p < 0.05) are bolded.

Table 3 
Lipid Classes and Sub-Classes Used to Assess Organic Matter Sources in Marsh and Pond Soils

Lipid class Compounds Sources References

Fatty acids

  Short chain fatty acids (SCFA) Σ(C12:0, C14:0, C16:0, C18:0) Microbes, algae, and some vascular 
plants

Jeffries (1972), Canuel et al. (1997), 
Sessions (2006)

  Monounsaturated fatty acids 
(MUFA)

Σ(C14:1, C16:1, C17:1, C18:1, C19:1, C20:1, 
C22:1, C24:1)

Bacteria, microalgae, macroalgae. 
Trace in S. alterniflora

Volkman et al. (1980, 1989), 
Kaneda (1991), Viso and 
Marty (1993), Fleurence 
et al. (1994), Canuel et al. (1997), 
Sessions, 2006

  Polyunsaturated fatty acids (PUFA) Σ(C20:4, C 20:5, C 22:5, C 22:6) Microalgae Volkman et al. (1989)

  Branched fatty acids (BrFA) iso- and anteiso- Σ (C13, C15, C17, C19) Bacteria Kaneda (1991)

  Long chain fatty acids (LCFA) Σ(C24:0, C 26:0, C28:0, C 30:0) Vascular plants Bianchi and Canuel (2011)

  Linoleic and linolenic fatty acids C18:2 + C18:3 S. alterniflora, R. maritima, microalgae Jeffries (1972), Volkman et al. (1989), 
Canuel et al. (1997)

Hydrocarbons

  Long-chain n-alkanes Σ(C27, C29, C31) S. alterniflora and to a lesser extent R. 
maritima

Canuel et al. (1997), Sessions (2006)

Note. Fatty acids and hydrocarbons represent fresher and more detrital material, respectively.
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3.4.  Estimating Pond Erosion

Pond erosion rates were constrained using radioisotope-based and physical models and by assuming negligible 
contributions of root collapse to deepening. A diffusion-migration model (Walling & Quine, 1994) based on 
total  210Pb inventories of the marsh and pond soils, yielded erosion rates of 4–10  cm  yr −1 (7.7–11.4  kg soil 
m −2 yr −1). We also developed simple wind-driven erosion models, based on the two fetch and water depth scenar-
ios (see Section 2.6 and Figure 2c), that provided estimates of critical pond depths at which erosion and resus-
pension were possible. When fetch is limited to pond diameters, critical depths for resuspension are 1.8–5.4 cm, 

but when fetch is 1–3  km across the flooded marsh, critical depths span 
a wider range of 0.1–12  cm. By combining pond soil bulk densities 
(Figure 3a), radioisotope-based erosion rates, and pond ages approximated 
from aerial images (Spivak et  al.,  2017) with a 12 cm critical depth from 
the wave model, we estimate maximum erosive losses of 14.4–26.4 kg soil 
m −2 (2.5–3.0 kg C m −2) from the three ponds. These figures represent maxi-
mum potential losses from pond formation to 2014, rather than progressive 
expansion over time, but would likely occur in the first few (2–3) years. Soil 
export from the ponds would only occur during simultaneous high wind and 
high-water events. Roughly 33% of high tides per year are sufficient to hydro-
logically connect ponds to tidal channels, based on observations by Spivak 
et al. (2017). Windows for erosive losses narrow to ∼17% of high tides, based 
on co-occurrence of wind and tide events during low (2014) and high (2013) 
wind years. Soil export during coinciding events would be uneven and possi-
bly concentrated to a few strong storms. Overall, our models demonstrate that 
sediment can be resuspended efficiently in very shallow water depths even 
though the marsh is only submerged a small fraction of the time.

4.  Discussion
4.1.  Ponding Effects Are Spatially Constrained

Pond expansion occurs at the expense of the vegetated marsh: grasses dieback, 
mudflats form, and soils are lost, forming depressions that widen and deepen 
over time (Figure  1; DeLaune et  al.,  1994; Mariotti & Fagherazzi,  2013; 
Wilson et  al.,  2014). Because of this lateral expansion, we expected that 
ponds may influence the physical structure and composition of surrounding 
marsh soils. Instead, we found that the bulk density and elemental composi-
tion of marsh soils were similar at differing distances from the ponds (∼10 vs. 
∼20 m; Figure 3, Table 1b). This indicates that ponding effects on the marsh 
are largely constrained to within a 10  m perimeter or smaller and do not 

Table 4 
Contrast Coefficients of Short Chain FAs (SCFA), Monounsaturated FAs (MUFA), Long Chain FAs (LCFA), Branched 
FAs (BrFA), Polyunsaturated FAs (PUFA), C18:2 + C18:3, and Odd-Chain n-Alkanes (Σ(C27,C29,C31)) (a) Between Depth 
Horizons Within and (b) Across the Ponds and the Far Marsh (M2) Site

Contrast %SCFA %MUFA %LCFA %BrFA %PUFA %C18:2 + C18:3 %∑(C27, 29,31)

a.

B–C POND 0.50 0.50 −21.77 −0.61 0.02 0.34 10.30

M2 0.15 0.15 −5.17 1.79 0.00 0.20 3.20

b.

M2–POND B −11.78 −0.07 8.66 0.44 −0.02 −0.16 −10.09

C 2.14 0.28 −7.94 −1.97 0.00 −0.02 −3.01

Note. Significant values (p < 0.05) are bolded. Because zone A only includes the M2 surface and does not have a pond 
complement it was excluded from statistical analyses. To meet assumptions of normality, %PUFA, %C18:2 + C18:3, and 
%MUFA were log-transformed prior to contrast analyses.

Figure 6.  Accretion rates in marshes closer (M1) and farther (M2) from the 
ponds. Mean rates are based on 3 cm increments and error bars represent SE. 
Zones after and before pond formation correspond to horizons above and 
below the year 1978 (Pond 1 and Pond 2) and 1963 (Pond 3), respectively, 
which is approximately when the ponds formed (∼1.3 m NAVD88). See 
Table 5 for contrast analyses.

 21698961, 2023, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JG

007063 by N
oaa D

epartm
ent O

f C
om

m
erce, W

iley O
nline L

ibrary on [26/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Biogeosciences

LUK ET AL.

10.1029/2022JG007063

12 of 19

reduce the integrity of this system more widely. Ponds are however enlarging, 
and thus converting the surrounding “undisturbed” marsh into an open water 
environment but higher spatial resolution sampling is needed to assess their 
zone of influence.

Below the marsh grass rooting zone, soil properties were fairly constant with 
slight increasing trends in bulk density and decreasing C:N ratios that likely 
reflect a combination of decomposition, soil compaction, and immobiliza-
tion of nitrogen into microbial biomass and necromass (zone A, 0–30 cm, 
1.18–1.48 m NAVD 88, Figure 3, Table 1a; Goñi and Thomas, 2000; Luk 
et al., 2021; Wang et al., 2003). Little variation in bulk density and organic 
matter content might suggest that the processes building soils are similar 
across the marsh, however, changing vertical accretion rates point to a more 
dynamic system (Figure 6, Table 5). Average accretion rates at the M2 sites 

were variable, slowing and then accelerating during the years bracketing 1963–1978. It is unlikely that these 
changes are related to pond formation and expansion since they are not apparent at the closer M1 sites. It is more 
likely that changing vertical accretion rates are associated with temporally and spatially stochastic processes. 
Soils eroded from tidal channels and mosquito ditches can be redeposited on the marsh platform but the extent 
and frequency of redistribution is an open question (Hopkinson et al., 2018; Luk et al., 2021). Strong winter 
storms can deposit sediment-laden ice from bays and tidal creeks onto the marsh platform (Argow et al., 2011; 
Baranes et al., 2022; Chmura et al., 2001; Reed, 1989; Schuerch et al., 2012). An example is a 2018 extratrop-
ical cyclone that delivered sediment equivalent to years of natural accumulation (FitzGerald et al., 2020). The 
sudden jump in accretion rates at the M2 sites happened in the two cores closest to a mosquito ditch (12 m, site 
1) and tidal channel (22 m, site 3) and is consistent with episodic deposition. Another option is that rapid accre-
tion followed infilling of relict ponds (Wilson et al., 2014) but this is unlikely as these features are not apparent 
in historical aerial photographs. Spatial and temporal heterogeneity in vertical accretion rates may also reflect 
factors such as changes in marsh grass species, abundance, and productivity (Bricker-Urso et al., 1989; Friedrichs 
& Perry, 2001; Turner et  al.,  2002). Although we cannot link variability in accretion to ponding, our results 
demonstrate that rates have increased over the past ∼100 years from 2.89 to 4.59 mm yr −1, which is comparable 
to relative SLR rates of 2.89 ± 0.15 mm yr −1 (NOAA station #8443970), and highlight that assessment of spatial 
and temporal heterogeneity is limited to the density and location of cores across the gradient of relevant drivers, 
as well as the temporal precision of the age model developed.

4.2.  Pond Soils Reflect Changing Organic Matter Inputs and Decomposition

Pond surface areas and depths vary widely within and across marsh ecosystems (Adamowicz & Roman, 2005; 
Millette et al., 2010). Current models invoke varying combinations of physical and biogeochemical processes to 
describe pond formation and expansion over time (Himmelstein et al., 2021; Mariotti, 2016; Mariotti et al., 2020). 
Yet, it remains unclear whether submergence effects on biogeochemical transformations extend below surface 
sediments and propagate into the underlying peat. Better constraining the processes contributing to deepening has 
implications for the controls on pond depths and our understanding of peat vulnerability to decomposition when 
environmental conditions change.

Compositional differences between pond surface sediments and the surrounding marsh reflect both new inputs 
from the communities that established following submergence and microbial reworking of older organic matter. 
More depleted δ 13C and δ 15N values, higher nitrogen content, and greater %SCFA, %PUFA, and %MUFA 
contributions in upper pond horizons (0–10 cm, 1.1–1.2 m NAVD 88), compared to the marsh, likely reflect 
newer inputs from benthic microalgae and soil microbes (Figures 3–5; Tables 1–4; Spivak & Ossolinski, 2016; 
Spivak et al., 2018). This is consistent with previous findings that benthic microalgae and, to a lesser extent, 
suspended particulate organic matter, are the main carbon sources in pond surface soils (0–2  cm), based on 
phospholipid-linked fatty acids (PLFAs) and isotope mixing models (Spivak et  al.,  2018). The submerged 
grass, R. maritima that established following permanent inundation, also produces C16:0 at fairly high levels and 
likely contributed to the peak in %SCFAs in the upper pond horizons, as this corresponds with its rooting zone 
(Henninger et al., 2009; Jeffries, 1972). New inputs likely dilute older contributions as %LCFA were relatively 
lower in the upper pond horizons compared to the marsh (0–10 cm; 1.1–1.2 m NAVD 88) but increased with 

Table 5 
Contrast Analyses of Marsh Accretion Rates (a) Between and (b) Within 
the Near (M1) and Far (M2) Marsh Sites After and Before Pond Formation 
(1963–1978)

a. b.

Accretion rate (M1—M2) Accretion rate (before—after)

Contrast Coefficient Contrast Coefficient

After pond −0.08 M1 −0.01

Before pond 0.09 M2 −0.02

Note. Coefficients p < 0.05 are bolded.
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depth (Figure 5c; Table 4). Although pond surface sediments accumulate organic matter from recently estab-
lished submerged communities, substantially lower radioisotope inventories and lower elevations compared to 
the marsh indicate that they are not net depositional environments. Any minor deposition that may occur during 
high energy events is not reflected in sedimentary record and would thus be transitory in nature and not add to 
net accretion.

Disturbances that cause marsh peat collapse can decrease soil bulk density and alter the decomposition environ-
ment (Chambers et al., 2019; Day et al., 2011; Wilson et al., 2018). Consistent with this, ponds had lower bulk 
densities compared to the marsh and shifts in organic matter composition and reactivity that reflect microbial 
processing (Figures 3–5). Levels of the n-alkanes C27, C29, and C31, representing more detrital organic matter 
sources, compared to FA, were relatively higher in pond surface sediments than the marsh (i.e., 1.1–1.2 m NAVD 
88, Figures 5g, Table 4b). Both S. alterniflora and R. maritima produce these compounds, but the former has 
higher levels, particularly of C29 (Tanner et  al.,  2010). Higher t50 values in the pond surfaces, compared to 
the marsh and deeper soil horizons, are consistent with an accumulation of more stable, detrital compounds 
(Figures 4c, Table 2; Lehmann et al., 2020; Luk et al., 2021; Williams & Rosenheim, 2015). Because thermo-
chemical properties reflect the bulk SOC pool, further molecular characterization (e.g., nuclear magnetic reso-
nance) would be needed to assess how selective preservation and microbial reworking contribute to the shift in 
stability (Sanderman & Grandy, 2019; Williams & Plante, 2018; Yang et al., 2006). Potential insight from bacte-
rial FA, which comprised similar fractions of organic matter in the upper pond horizons and the marsh (% BrFA; 
Figure 5, Table 4), is limited as other, more sensitive biomarkers (e.g., PLFAs) or molecular approaches (e.g., 
ribonucleic acids) are better proxies of microbial activity and community composition (Bulseco et al., 2020). 
Regardless of the process driving the shift, greater thermal stability is associated with longer SOC turnover times, 
which may slow continued deepening and peat loss (Luk et al., 2021).

Below the upper pond horizons and rooting depth of R. maritima, (0–10 cm; 1.1–1.2 m NAVD 88) soil prop-
erties and composition were similar to the surrounding marsh, underscoring that ponds overlie salt marsh peat 
(Figures 3–5). For instance, soil bulk densities, elemental content, lipid biomarker profiles, and thermal proper-
ties were similar between the ponds and the marsh below ∼1.1 m NAVD 88 (Zone C–D; Figures 3–5, Tables 1, 
2, and 4). Soil δ 13C values converged to −14.3 ± 1.2‰ (Figure 4a; Table 2), indicating that buried carbon mainly 
derives from marsh grasses (Benner et al., 1987; Spivak & Ossolinski, 2016). The exceptions to this pattern were 
δ 15N values and bacterial FA which were lower and higher, respectively, in deeper pond horizons compared to 
the marsh (Figures 4b and 5d; Tables 2 and 4). Coincidentally, porewater profiles of microbial respiratory prod-
ucts (i.e., dissolved inorganic carbon [DIC], ammonium) and electron acceptors (i.e., sulfate) in pond sediments 
demonstrate that production and consumption, respectively, occur to at least 20 cm depth (Spivak et al., 2018). 
Further, δ 13C values of branched PLFAs and porewater DIC suggest that soil microbes are partially reliant 
on buried peat (Spivak et al., 2018). While ponding effects on sediment physical structure and organic matter 
composition are largely limited to upper horizons (i.e., 0–10 cm, 1.1–1.2 m NAVD88; Figures 3–5) changes in 
the belowground environment that influence bacterial communities may extend deeper.

Overlaying proxies of organic matter sources and reactivity allowed us to differentiate new inputs (Figures 5a 
and  5e) from transformations consistent with microbial reworking (Figures  4c and  5g). Accumulation of 
senesced biomass from submerged primary producers in pond sediments is likely limited by substantial heter-
otrophic microbial demand (i.e., high respiration rates) and a favorable decomposition environment (Spivak 
et al., 2017, 2018, 2020). This is consistent with laboratory and landscape-scale experiments in which simulated 
disturbances increase the bioavailability of buried marsh organic matter to microbes (Bowen et al., 2009; Bulseco 
et al., 2019, 2020; Spivak et al., 2018). Over time this has resulted in a shift toward an accumulation of more 
stable SOC in pond surfaces, whether by way of selective preservation or microbial alteration (Figures 4c and 5g). 
If thermal properties reflect bioavailability, then shifts toward more stable SOC may slow rates of pond deepen-
ing via decomposition. While contrasting SOC composition between pond surfaces and the nearby marsh points 
to decomposition, we cannot ascertain the relative importance of this process as a driver of organic matter loss 
compared to erosion with this set of biomarkers and proxies.

4.3.  The Fate of Carbon During Pond Expansion

Ponds can reduce salt marsh soil carbon storage by preventing new burial and facilitating loss of long-buried 
organic matter (Wilson et  al.,  2009,  2010). The present-day water-filled volumes of the ponds represent soil 
carbon stocks that are missing from the wider ecosystem. The size of the missing carbon stocks is estimated from 
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pond volumes (Spivak et al., 2017) and by assuming that the soil carbon density would have been equivalent to 
the marsh (33.1 kg C m −3; Figure 3). Three processes that could account for the missing carbon are avoided (or 
prevented) accretion and removal via erosion and decomposition. Since the ponds formed, the marshes gained 
6.8–9.7 cm in elevation and accumulated 59.5–79.3 g C m −2 yr −1; this represents avoided accretion and accounts 
for 32%–42% of the missing carbon stock.

Erosion effects on pond deepening would have been limited to the first few years when the systems were shallow-
est. We estimate that winds could have resuspended and facilitated export of up to 14.4–26.4 kg m −2 of soil from 
the ponds within the first 2–3 years of forming, based on the longer fetch scenario and deepest critical depth of 
12 cm (Figure 2c). Maximum erosion losses could reach 2.5–3.0 kg C m −2, constituting up to 35%–38% of the 
missing pond carbon (Table 6a). This an upper bound because we assumed that peat collapse did not contribute 
to deepening and that all resuspended soil is exported. The likelihood of export, however, would be limited to 
coinciding high wind events and tides that hydrologically connect ponds to channels, and could be limited to a 
few strong storms. The frequency at which soils are resuspended and exported likely slows over time, as the ponds 
deepen and the fraction of surface water exchanged during high tides decreases. For instance, small changes in 
water temperatures, dissolved oxygen concentrations, levels of suspended particulate organic matter over periods 
of tidal connection and isolation suggest that the ponds are not strongly flushed when the marsh floods (Spivak 
et al., 2017). However, stochastic events, such as strong storms that arrive during high tides, have the potential to 
move substantial amounts of sediment (FitzGerald et al., 2020). In some systems, the dominant wind direction 
and storms that follow predictable tracks can affect the shapes of expanding ponds, with a net effect of longer 
fetches and greater potential for erosion (Ortiz et al., 2017; Stevenson et al., 1985). Wind-driven resuspension 
may also indirectly contribute to carbon loss, by moving particles from anoxic sediments into oxic surface waters 
where decomposition may be more likely (Abril et al., 1999; Boynton et al., 1981). Further constraining potential 
erosive losses requires high resolution monitoring of pond turbidity, water levels, and temporal changes in spatial 
attributes, as well as capturing storm events.

After accounting for accretion and potential erosion, the remaining fraction of the missing carbon stock (22%–
68%) is attributed to decomposition (Tables  6a and  6b). This corresponds to 32.7–132.9  g  C  m −2  yr −1 (see 
Section 3.4), which is comparable to benthic respiration (11–92 g C m −2; Spivak et al., 2018) and whole-pond 
metabolism rates (68–172.2 g C m 2 yr −1; Spivak et al., 2017, 2020). Decomposition is also consistent with the 
accumulation of detrital vascular plant organic matter and more thermally stable organic carbon in pond surface 
soils (Figures 4c and 5g; Luk et al., 2021). The respired carbon can be taken up by primary producers in the 
pond and recycled or lost via DIC export or CO2 evasion to the atmosphere. Unusually enriched δ 13C values of 
pond primary producers indicate that some fraction is recycled, however, high sediment respiration rates and 
whole-pond net heterotrophy suggest that much of the respired carbon is lost (Spivak et al., 2017, 2018, 2020). 
Finally, assuming that the bulk density of buried organic matter is 85 kg m 3 (Morris et al., 2016), and that the 
carbon content of the organic matter is 50% by mass, a decomposition rate of 32.7–132.9 g C m −2 yr −1 corre-
sponds to an active deepening rate of 0.8–3.1 mm yr −1, which is consistent with a rate of 3 mm yr −1 estimated 
from a marsh evolution model (Mariotti et al., 2020).

Table 6 
Carbon Stocks Missing From Ponds Can Be Attributed to Avoided Accretion, Erosion, and Decomposition

Site Pond age Avoided accumulation (%) Erosion loss (%) Decomposition loss (%)
Decomposition 

rate (g C m −2 y −1)

a

1 38 32 35 33 62

2 38 37 38 25 53

3 51 42 36 22 33

b

1 38 32 0 68 129

2 38 37 0 63 133

3 51 42 0 58 86

Note. Estimated contribution of each process when erosion losses are greatest (a) or minimal (b).
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The processes contributing to pond formation and deepening prevent burial and represent pathways of carbon 
loss or recycling within the system. We estimate that prevented burial, erosion, and decomposition account for 
32%–42%, 0%–38%, 22%–68% of the carbon that is missing from the marsh due to the formation of ponds of 
similar ages and sizes. The contribution of prevented accretion is similar to prior estimates while that of decom-
position is considerably smaller (Spivak et al., 2017, 2018). This difference likely reflects prior assumptions of 
lower marsh SOC content (7%; Deegan et al., 2012; Spivak et al., 2017) and extrapolation of seasonal respiration 
rates to longer timescales (Spivak et al., 2017, 2018, 2020), as well as our current approach of equating decompo-
sition with the fraction of missing carbon that is not attributable to prevented accretion or erosion (Table 6). The 
wide estimates of missing carbon fates also reflect differences in pond sizes and ages, our approach of bracketing 
erosional losses with minimum and maximum values, and unknown contributions of root collapse to deepening, 
among other uncertainties. Refining erosion estimates further would also benefit from high resolution water level 
and turbidity data to constrain resuspension and export. Regardless, our current and prior findings indicate that 
decomposition and erosion can represent important carbon loss pathways, but with very different implications. 
Decomposition of long-buried organic matter returns inorganic carbon to the atmosphere or the coastal ocean. 
Eroded soil has the potential to be redistributed within the salt marsh system and contribute to burial and accre-
tion elsewhere (Hopkinson et al., 2018; Luk et al., 2021). However, resuspension in oxic tidal waters may facil-
itate decomposition, contributing to high coastal pCO2 levels, as little of this material is likely to survive export 
and burial in nearshore sediments (Canuel & Martens, 1993, 1996).

4.4.  Incorporating Ponds Into Ecosystem Carbon Budgets

Although ponds are found in salt marshes worldwide (Adamowicz & Roman,  2005; Boston,  1983; Rigaud 
et al., 2018; Schepers et al., 2017), they are rarely included in ecosystem carbon budgets. In PIE-LTER, the 6% 
of area occupied by ponds in the ∼40 km 2 marsh (Mariotti et al., 2020; Millette et al., 2010; Wilson et al., 2014) 
reduces marsh-wide soil carbon stocks to 1 m depth by ∼5%. This is likely an upper bound due to redeposition 
of eroded material and because peat deposits are deeper than 1 m in the PIE marshes (Cavatorta et al., 2003; Luk 
et al., 2021; Wilson et al., 2014). Ponds therefore represent a small source of error in this system, particularly with 
respect to other sources of uncertainty and overall spatial heterogeneity (Holmquist et al., 2018), even though they 
have been expanding in recent decades due to ditch naturalization (Wilson et al., 2014).

Pond expansion may represent a larger uncertainty of soil carbon stocks of submerging marshes (Mariotti, 2016; 
Morris et al., 2002). For example, ponds occupy far greater fractions of marsh extent in the Blackwater River 
system (Maryland) and Mississippi River Delta Plain (Louisiana) (Ortiz et al., 2017; Penland, 2002; Schepers 
et al., 2017). This preponderance of ponds, compared to the marshes of PIE, is likely the result of a small tidal 
range, high rate of relative SLR, and low sediment supply (Mariotti, 2016). Given that pond expansion would 
take place before the marsh platform starts to drown (Mariotti, 2016), carbon might be lost faster than previously 
estimated from models that do not include pond dynamics (Herbert et al., 2021).

A promising approach to include the effect of pond dynamics in the marsh carbon budget is to use spatially 
integrative metrics that can be estimated from remote sensing, such as the Unvegetated-Vegetated marsh Ratio 
(UVVR) (Ganju et al., 2022). Detailed studies should investigate if the “missing” carbon due to the presence of 
ponds can be empirically correlated to the UVVR, and more specifically at what scale of spatial aggregation the 
UVVR needs to be calculated in order to best represent ponds as opposed to mudflats areas or channels.

5.  Conclusions
Pond expansion threatens to contribute to salt marsh loss (Cavatorta et al., 2003; Hartig et al., 2002; Mariotti,
2016; Mariotti & Fagherazzi, 2013) and an important unknown is the fate of lost soil carbon. We demonstrate 
that erosion and decomposition can play key roles in pond expansion and progressive deepening. The relative 
importance of those processes likely changes over time, with greater erosive losses during the first years and 
decomposition increasingly eating away at long buried marsh peat. We estimate that erosion and decomposition 
account for roughly two thirds of carbon lost due to ponding in PIE but those fractions may differ in marshes 
with different soil types, plant species, tidal ranges, elevation within the tidal frame, and rates of relative SLR, 
among other processes. Shifts in environmental conditions associated with pond expansion facilitated microbial 
access to long-buried peat resulting in a shift toward an accumulation of detrital, vascular plant biomarkers and 
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more thermally stable organic matter. Though pond extent has been slowly increasing in PIE, runaway expansion 
is not currently a problem and there is evidence of pond draining, infilling, and recovery (Wilson et al., 2014). 
Importantly, pond effects on the surrounding PIE marshes are constrained to within 10 m perimeters and, at low 
densities, are unlikely to have destabilizing effects on the wider platform.
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